top of page
作家相片Muting Functional Medicine

氫分子在癌症預防與治療中的應用:從抗氧化到免疫調節的潛力

一種還原性氣體在醫學中的潛力被不斷挖掘。氫分子(H₂)憑藉其選擇性清除高活性自由基的特性,不僅展現了顯著的抗氧化作用,更在癌症治療中展現出多方面的效益。自1975年首次報導氫氣可治癒小鼠癌症後,氫分子的研究進入了令人振奮的新時代。近年來,越來越多的研究證實了氫分子不僅能減輕化療和放療的副作用,還能在抑制癌細胞增殖和改善患者生活品質方面發揮積極作用。


一篇文獻發表於 2024年,刊載於 Journal of Cancer Research and Clinical Oncology《癌症研究與臨床腫瘤學雜誌》的文章,作者引用了118篇關於癌症相關的參考文獻,涵蓋了分氫子在癌症預防與治療中的潛力、作用機制以及臨床應用,深入探討了氫分子在癌症預防與治療中的前景,特別是其在免疫調節、抗氧化和腸道菌群調控等方面的機制。這些發現不僅為癌症患者提供了新的治療選擇,也為精準醫療帶來了更廣泛的應用可能性。我深知這項技術仍有許多未知領域有待探索。這篇文章為我們提供了一個堅實的基礎,指引我們邁向一個更健康的未來。

Journal of Cancer Research and Clinical Oncology《癌症研究與臨床腫瘤學雜誌》是一份由 Springer 出版的國際性學術期刊,專注於癌症領域的基礎研究、臨床應用以及轉化醫學的最新進展。期刊特色:涵蓋腫瘤生物學、治療方法(包括化療、放療、免疫治療等)、癌症基因組學及其臨床應用。期刊吸引了來自全球的研究者投稿,特別重視多中心臨床研究和創新療法。目標讀者包括腫瘤學家、基礎科學家、臨床醫生以及研究人員,為癌症相關領域的專業人士提供最新研究成果。該期刊具備較高的學術影響力和嚴謹的同行評審機制。主要目標: 期刊致力於推動癌症研究的進步,促進學術界與臨床實踐的緊密聯繫,為全球癌症患者的診治提供理論支持和實踐指導。
氫分子在癌症預防和治療的前景
Zhou W, Zhang J, Chen W, Miao C. Prospects of molecular hydrogen in cancer prevention and treatment. J Cancer Res Clin Oncol. 2024 Mar 31;150(4):170. doi: 10.1007/s00432-024-05685-7. PMID: 38555538; PMCID: PMC10982102.

氫分子在癌症預防與治療中的前景


癌症是全球最主要的健康挑戰之一,根據世界衛生組織統計,癌症是112個國家中死亡的首要或次要原因,並且癌症的全球負擔仍在不斷增加。傳統的治療方法,如手術、放射治療及化療,雖然在癌症治療中扮演重要角色,但它們經常伴隨顯著的副作用且治療效果有限。


近年來,氣體信號分子(如一氧化氮、硫化氫等)在癌症治療中的潛力逐漸被發現,而氫分子(H₂)作為還原性氣體,展現出顯著的抗腫瘤效應。自1975年首次研究發現高濃度氫氣可治癒小鼠的鱗狀細胞癌以來,氫分子在癌症治療中的應用逐漸成為研究的焦點。本文章將探討分子氫在癌症預防與治療中的作用及其機制,並展望其臨床應用的未來發展方向。


腸道菌群產生的氫氣:天然的抗腫瘤屏障


腸道菌叢中的氫氣代謝調節腸道健康
圖1.腸道菌叢中的氫氣代謝調節腸道健康
圖1展示了腸道氫氣代謝如何調節腸道健康,表現產氫菌與氫營養菌的交互作用,以及其對腸道環境的影響。

氫氣的腸道代謝過程


腸道菌群每天可生成大量氫氣,這一過程主要依賴於不可消化的碳水化合物(如澱粉、纖維素)作為基質進行厭氧氧化代謝。例如,研究表明,產氫菌可通過將澱粉分解為氫氣與短鏈脂肪酸(SCFA)促進腸道代謝。此外,另一項研究指出,飲用氫氣水能有效調節腸道菌群組成,抑制腸炎症狀並促進腸道屏障修復。產氫菌生成的氫氣可被腸道內的氫營養菌(如產甲烷菌、硫酸鹽還原菌)利用,並通過調節腸道菌群的代謝平衡維持腸道健康(如圖1所示)。


氫氣維持全身穩態的作用


腸道菌叢產生的氫氣維持多系統健康和免疫穩態
圖2 腸道菌叢產生的氫氣維持多系統健康和免疫穩態
圖2 作者說明了腸道菌群產生的氫氣如何支持SCFA生成,並影響多系統健康與免疫穩態,及氫氣對於的全身性作用。

研究表明,腸道產生的氫氣不僅對腸道健康至關重要,還參與調節全身的氧化還原平衡與免疫穩態。氫氣可促進短鏈脂肪酸(SCFA)的生成,這些物質對腸道上皮細胞和免疫細胞具有重要的能量供應功能(如圖2所示)。此外,氫氣還能透過腸–腦軸、腸–肺軸等通路影響多系統健康,對腸道屏障完整性和炎症的調節具有顯著作用。


氫分子的抗腫瘤作用與潛在機制


抗腫瘤與輔助治療作用


自Dole等首次研究發現氫氣的抗腫瘤效應以來,多項研究證實了其對肺癌、結直腸癌等多種癌症的抑制效果。氫氣能夠減少癌細胞的增殖與轉移,並在放療與化療中發揮輔助作用,減少這些治療方式所導致的氧化壓力與炎症反應。


通過抗氧化機制的抗腫瘤效應

氫分子抗氧化壓力的機制
圖3氫分子抗氧化壓力的機制
圖3 的展示了氫氣在抗氧化壓力中的作用機制,包括關鍵的抗氧化酶(如SOD、CAT、GPx)的參與以及信號通路(如Nrf2/ARE)的調節,展示氫分子的抗氧化能力及影響腫瘤治療。

氫分子具有選擇性清除高活性自由基(如·OH、ONOO⁻)的能力,避免了對正常細胞內其他ROS(如H₂O₂)的干擾。其抗氧化作用還包括抑制ROS依賴的信號通路(如NF-κB、Akt/mTOR),並提升抗氧化酶(如SOD、GPx)的表達。此外,氫氣能透過Nrf2/ARE路徑調控基因表達,促進細胞抗氧化能力(如圖3所示)。


3. 免疫保護功能
氫分子透過選擇性消除腫瘤微環境中的ROS來發揮抗腫瘤活性
圖4.氫分子透過選擇性消除腫瘤微環境中的ROS來發揮抗腫瘤活性
圖4 作者詳細說明了氫氣如何通過選擇性清除腫瘤微環境中的ROS,阻止DNA損傷和線粒體功能紊亂,進而維持T細胞的正常功能。氫氣在抗腫瘤免疫中的作用,特別是針對PD-1表達和T細胞功能恢復的影響。

臨床研究表明,氫氣能調控T細胞功能,降低PD-1表達,逆轉T細胞耗竭,並恢復腫瘤浸潤淋巴細胞的活性。氫氣通過減少癌症微環境中的氧化壓力,保護T細胞線粒體,從而防止T細胞凋亡和功能喪失,增強免疫系統的抗腫瘤能力(如圖4所示)。


氫分子的應用策略


外源性氫氣供應

氫分子的應用
圖5 氫分子的應用
圖5 展示了多種氫氣的外源性應用方式及其潛在的臨床效果,能幫助讀者視覺化氫氣在癌症治療中多方面的應用策略,特別是不同方法對身體組織和系統的影響。

氫氣的外源性應用包括吸入、口服氫氣水、注射富氫鹽水及外用等多種方式。其中,氫氣水(HRW)在調節腸道菌群和促進能量代謝方面具有獨特的優勢。例如,研究發現口服氫氣水可改善腸道菌群組成,增加SCFA的生成,並降低炎症水平。


調控腸道內源性氫氣的生成


透過高纖維飲食及乳果糖等不可消化碳水化合物的補充,可促進腸道內氫氣的自然生成,這是一種經濟且日常可行的治療策略。例如,乳果糖已被證實能透過促進腸道氫氣生成,緩解腸道炎症及多系統疾病。


手術過程的應用

氫氣在腫瘤患者手術期間的多重作用
圖6氫氣在腫瘤患者手術期間的多重作用
圖6 作者展示了氫氣在手術期間的多重作用,包括抗氧化、抗炎、神經保護以及能量調控等功能,能直觀說明氫氣在腫瘤患者手術過程中的應用價值及潛在機制。

對於需要手術治療的癌症患者,氫氣在手術期間具有多方面的保護作用,包括減少氧化壓力、改善缺血再灌注損傷及調節神經炎症。此外,氫氣水還能結合免疫營養干預,幫助患者維持能量代謝與免疫穩態。


結論與展望


氫分子作為一種天然的抗氧化劑,其多重生物學效應使其在癌症預防與治療中展現了廣泛的應用潛力,特別是在抗氧化、抗炎以及免疫調節方面的突出作用。腸道菌群產生的氫氣不僅能通過促進短鏈脂肪酸(SCFA)的生成維持腸道及全身穩態,還能通過選擇性清除高活性自由基(如·OH、ONOO⁻)減輕癌症微環境中的氧化壓力,抑制腫瘤的發展和轉移。


現有研究證實,氫氣在協同放療、化療及免疫治療中展現了良好的輔助效果,例如提升患者的生活品質、減少治療相關的副作用以及改善免疫功能。尤其是氫氣能夠逆轉腫瘤浸潤淋巴細胞(TILs)的功能耗竭,恢復T細胞線粒體功能,並增強抗腫瘤免疫應答,為現代腫瘤治療提供了嶄新的思路。


總而言之,氫氣的應用前景不僅局限於癌症治療,還可能擴展至慢性炎症性疾病、代謝性疾病及神經退行性疾病等領域。透過多學科協作及技術創新,分子氫有望成為未來醫療保健的重要組成部分,為全球健康挑戰提供更多創新解決方案。


您可以參考更多「氫分子醫療相關文獻」。



 

「若患有任何癌症相關疾病,請務必遵從醫生的專業建議,將傳統的常規治療作為首選。上述提到的新興療法,氫分子的應用,尚需進一步臨床研究以證明其安全性和有效性。需在專業醫療團隊的指導下,積極採取科學治療手段,尋求全面康復。」

 

參考文獻

  1. Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous vegetables, isothiocyanates, and bladder cancer prevention. Mol Nutr Food Res. 2018;62(18):e1800079. doi: 10.1002/mnfr.201800079.

  2. Adiamah A, Rollins KE, Kapeleris A, Welch NT, Iftikhar SY, Allison SP, Lobo DN. Postoperative arginine-enriched immune modulating nutrition: long-term survival results from a randomised clinical trial in patients with oesophagogastric and pancreaticobiliary cancer. Clin Nutr. 2021;40(11):5482–5485. doi: 10.1016/j.clnu.2021.09.040.

  3. Adzavon YM, Xie F, Yi Y, Jiang X, Zhang X, He J, Zhao P, Liu M, Ma S, Ma X. Long-term and daily use of molecular hydrogen induces reprogramming of liver metabolism in rats by modulating NADP/NADPH redox pathways. Sci Rep. 2022;12(1):3904. doi: 10.1038/s41598-022-07710-6.

  4. Akagi J, Baba H. Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep. 2019;41(1):301–311. doi: 10.3892/or.2018.6841.

  5. Akagi J, Baba H. Hydrogen gas activates coenzyme Q10 to restore exhausted CD8(+) T cells, especially PD-1(+)Tim3(+)terminal CD8(+) T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol Lett. 2020;20(5):258. doi: 10.3892/ol.2020.12121.

  6. Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010;51(4):304–314. doi: 10.1002/em.20546.

  7. Bordoni L, Gabbianelli R, Fedeli D, Fiorini D, Bergheim I, Jin CJ, Marinelli L, Di Stefano A, Nasuti C. Positive effect of an electrolyzed reduced water on gut permeability, fecal microbiota and liver in an animal model of Parkinson’s disease. PLoS ONE. 2019;14(10):e0223238. doi: 10.1371/journal.pone.0223238.

  8. Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9(9):504–518. doi: 10.1038/nrgastro.2012.85.

  9. Chandel NS, Tuveson DA. The promise and perils of antioxidants for cancer patients. N Engl J Med. 2014;371(2):177–178. doi: 10.1056/NEJMcibr1405701.

  10. Chen J, Vitetta L. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer. 2018;17(3):e541–e544. doi: 10.1016/j.clcc.2018.05.001.

  11. Chen X, Zhai X, Shi J, Liu WW, Tao H, Sun X, Kang Z. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production. Dig Dis Sci. 2013;58(6):1560–1568. doi: 10.1007/s10620-013-2563-7.

  12. Chen H, Xie K, Han H, Li Y, Liu L, Yang T, Yu Y. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol. 2015;28(1):643–654. doi: 10.1016/j.intimp.2015.07.034.

  13. Chen JB, Kong XF, Qian W, Mu F, Lu TY, Lu YY, Xu KC. Two weeks of hydrogen inhalation can significantly reverse adaptive and innate immune system senescence patients with advanced non-small cell lung cancer: a self-controlled study. Med Gas Res. 2020;10(4):149–154. doi: 10.4103/2045-9912.304221.

  14. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22(5):280–297. doi: 10.1038/s41568-021-00435-0.

  15. Dalal N, Jalandra R, Bayal N, Yadav AK, Harshulika, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol. 2021;147(11):3141–3155. doi: 10.1007/s00432-021-03729-w.

  16. Deng H, Yang W, Zhou Z, Tian R, Lin L, Ma Y, Song J, Chen X. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat Commun. 2020;11(1):4951. doi: 10.1038/s41467-020-18745-6.

  17. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21. doi: 10.1016/j.cell.2016.10.043.

  18. Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, Forlenza OV, Barichello T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res. 2021;164:105314. doi: 10.1016/j.phrs.2020.105314.

  19. Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. 1975;190(4210):152–154. doi: 10.1126/science.1166304.

  20. Dong A, Yu Y, Wang Y, Li C, Chen H, Bian Y, Zhang P, Zhao Y, Yu Y, Xie K. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics. Int Immunopharmacol. 2018;65:366–372. doi: 10.1016/j.intimp.2018.10.012.

  21. Erny D, Prinz M. How microbiota shape microglial phenotypes and epigenetics. Glia. 2020;68(8):1655–1672. doi: 10.1002/glia.23822.

  22. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi: 10.1038/s41579-020-0433-9.

  23. Fang W, Wang G, Tang L, Su H, Chen H, Liao W, Xu J. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J Cell Mol Med. 2018;22(9):4243–4252. doi: 10.1111/jcmm.13704.

  24. Flannigan KL, Wallace JL. Hydrogen sulfide-based anti-inflammatory and chemopreventive therapies: an experimental approach. Curr Pharm Des. 2015;21(21):3012–3022. doi: 10.2174/1381612821666150514105413.

  25. Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 2018;39(6):489–502. doi: 10.1016/j.it.2018.01.005.

  26. Franco F, Jaccard A, Romero P, Yu YR, Ho PC. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2(10):1001–1012. doi: 10.1038/s42255-020-00280-9.

  27. Fu Z, Zhang J. Molecular hydrogen is a promising therapeutic agent for pulmonary disease. J Zhejiang Univ Sci B. 2022;23(2):102–122. doi: 10.1631/jzus.B2100420.

  28. Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101(6):998–1002. doi: 10.1016/j.neuron.2019.02.008.

  29. Ge L, Qi J, Shao B, Ruan Z, Ren Y, Sui S, Wu X, Sun X, Liu S, Li S, Xu C, Song W. Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes. 2022;14(1):2013764. doi: 10.1080/19490976.2021.2013764.

  30. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10(3):761–777. doi: 10.1038/ismej.2015.153.

  31. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–388. doi: 10.1038/s41591-019-0377-7.

  32. Higashimura Y, Baba Y, Inoue R, Takagi T, Uchiyama K, Mizushima K, Hirai Y, Ushiroda C, Tanaka Y, Naito Y. Effects of molecular hydrogen-dissolved alkaline electrolyzed water on intestinal environment in mice. Med Gas Res. 2018;8(1):6–11. doi: 10.4103/2045-9912.229597.

  33. Hirano SI, Yamamoto H, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Molecular hydrogen as a novel antitumor agent: possible mechanisms underlying gene expression. Int J Mol Sci. 2021;22(16):8724. doi: 10.3390/ijms22168724.

  34. Hirano SI, Aoki Y, Li XK, Ichimaru N, Takahara S, Takefuji Y. Protective effects of hydrogen gas inhalation on radiation-induced bone marrow damage in cancer patients: a retrospective observational study. Med Gas Res. 2021;11(3):104–109. doi: 10.4103/2045-9912.314329.

  35. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–421. doi: 10.1038/nrm3801.

  36. Hornsveld M, Dansen TB. The hallmarks of cancer from a redox perspective. Antioxid Redox Signal. 2016;25(6):300–325. doi: 10.1089/ars.2015.6580.

  37. Hsiao YF, Cheng SB, Lai CY, Liu HT, Huang SC, Huang YC. The prognostic role of glutathione and its related antioxidant enzymes in the recurrence of hepatocellular carcinoma. Nutrients. 2021;13(11):4071. doi: 10.3390/nu13114071.

  38. Iio A, Ito M, Itoh T, Terazawa R, Fujita Y, Nozawa Y, Ohsawa I, Ohno K, Ito M. Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Med Gas Res. 2013;3(1):6. doi: 10.1186/2045-9912-3-6.

  39. Iketani M, Ohshiro J, Urushibara T, Takahashi M, Arai T, Kawaguchi H, Ohsawa I. Preadministration of hydrogen-rich water protects against lipopolysaccharide-induced sepsis and attenuates liver injury. Shock. 2017;48(1):85–93. doi: 10.1097/SHK.0000000000000810.

  40. Ishikawa T, Shimada S, Fukai M, Kimura T, Umemoto K, Shibata K, Fujiyoshi M, Fujiyoshi S, Hayasaka T, Kawamura N, Kobayashi N, Shimamura T, Taketomi A. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study. Surg Today. 2018;48(12):1081–1088. doi: 10.1007/s00595-018-1693-0.

  41. Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int J Mol Sci. 2019;20(18):4407. doi: 10.3390/ijms20184407.

  42. Ito M, Hirayama M, Yamai K, Goto S, Ito M, Ichihara M, Ohno K. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res. 2012;2(1):15. doi: 10.1186/2045-9912-2-15.

  43. Jena NR. DNA damage by reactive species: mechanisms, mutation and repair. J Biosci. 2012;37(3):503–517. doi: 10.1007/s12038-012-9218-2.

  44. Jiang F, Du C, Jiang W, Wang L, Du SK. The preparation, formation, fermentability, and applications of resistant starch. Int J Biol Macromol. 2020;150:1155–1161. doi: 10.1016/j.ijbiomac.2019.10.124.

  45. Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B. 2021;9(41):8541–8557. doi: 10.1039/d1tb01661j.

  46. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M, Adachi T, Obayashi H, Yoshikawa T. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 2008;28(3):137–143. doi: 10.1016/j.nutres.2008.01.008.

  47. Kalantar-Zadeh K, Berean KJ, Burgell RE, Muir JG, Gibson PR. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol. 2019;16(12):733–747. doi: 10.1038/s41575-019-0193-z.

  48. Kamimura N, Nishimaki K, Ohsawa I, Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (silver Spring) 2011;19(7):1396–1403. doi: 10.1038/oby.2011.6.

  49. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, Koike K, Tsuzaki R, Matsumoto K, Miyake Y, Shiraha H, Morita M, Makino H, Yamamoto K. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology. 2012;56(3):912–921. doi: 10.1002/hep.25782.

  50. Kikkawa YS, Nakagawa T, Taniguchi M, Ito J. Hydrogen protects auditory hair cells from cisplatin-induced free radicals. Neurosci Lett. 2014;579:125–129. doi: 10.1016/j.neulet.2014.07.025.

  51. Kong Q, Wang B, Tian P, Li X, Zhao J, Zhang H, Chen W, Wang G. Daily intake of Lactobacillus alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. Food Funct. 2021;12(6):2591–2604. doi: 10.1039/d0fo02375b.

  52. Lai Z, Shan W, Li J, Min J, Zeng X, Zuo Z. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry. 2021;26(12):7167–7187. doi: 10.1038/s41380-021-01291-y.

  53. Lee SY, Lee DY, Kang JH, Kim JH, Jeong JW, Kim HW, Oh DH, Yoon SH, Hur SJ. Relationship between gut microbiota and colorectal cancer: probiotics as a potential strategy for prevention. Food Res Int. 2022;156:111327. doi: 10.1016/j.foodres.2022.111327.

  54. Li J, Wang C, Zhang JH, Cai JM, Cao YP, Sun XJ. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res. 2010;1328:152–161. doi: 10.1016/j.brainres.2010.02.046.

  55. Li S, Liao R, Sheng X, Luo X, Zhang X, Wen X, Zhou J, Peng K. Hydrogen gas in cancer treatment. Front Oncol. 2019;9:696. doi: 10.3389/fonc.2019.00696.

  56. Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer. 2019;18(1):65. doi: 10.1186/s12943-019-0961-y.

  57. Matzner P, Sandbank E, Neeman E, Zmora O, Gottumukkala V, Ben-Eliyahu S. Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol. 2020;17(5):313–326. doi: 10.1038/s41571-019-0319-9.

  58. McCarty MF. Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses. 2015;84(4):350–355. doi: 10.1016/j.mehy.2015.01.018.

  59. Mego M, Accarino A, Tzortzis G, Vulevic J, Gibson G, Guarner F, Azpiroz F. Colonic gas homeostasis: mechanisms of adaptation following HOST-G904 galactooligosaccharide use in humans. Neurogastroenterol Motil. 2017;29(9):e13080. doi: 10.1111/nmo.13080.

  60. Meng X, Chen H, Wang G, Yu Y, Xie K. Hydrogen-rich saline attenuates chemotherapy-induced ovarian injury via regulation of oxidative stress. Exp Ther Med. 2015;10(6):2277–2282. doi: 10.3892/etm.2015.2787.

  61. Meng J, Lv Z, Zhang Y, Wang Y, Qiao X, Sun C, Chen Y, Guo M, Han W, Ye A, Xie T, Chu B, Shi C, Yang S, Chen C. Precision redox: the key for antioxidant pharmacology. Antioxid Redox Signal. 2021;34(14):1069–1082. doi: 10.1089/ars.2020.8212.

  62. Mo XY, Li XM, She CS, Lu XQ, Xiao CG, Wang SH, Huang GQ. Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperusion-induced apoptosis through VDAC1 via Bcl-2. Brain Res. 2019;1706:110–115. doi: 10.1016/j.brainres.2018.09.037.

  63. Najjar YG, Menk AV, Sander C, Rao U, Karunamurthy A, Bhatia R, Zhai S, Kirkwood JM, Delgoffe GM. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight. 2019;4(5):e124989. doi: 10.1172/jci.insight.124989.

  64. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol. 2009;64(4):753–761. doi: 10.1007/s00280-008-0924-2.

  65. Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci. 2021;17(1):73–88. doi: 10.7150/ijbs.47850.

  66. Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H, Gerbaba TK, Lloyd-Price J, Abu-Ali G, Hall AB, Sikavi D, Drew DA, Mehta RS, Arze C, Joshi AD, Yan Y, Branck T, DuLong C, Ivey KL, Ogino S, Rimm EB, Song M, Garrett WS, Izard J, Huttenhower C, Chan AT. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology. 2020;158(5):1313–1325. doi: 10.1053/j.gastro.2019.12.029.

  67. Nishimura N, Tanabe H, Adachi M, Yamamoto T, Fukushima M. Colonic hydrogen generated from fructan diffuses into the abdominal cavity and reduces adipose mRNA abundance of cytokines in rats. J Nutr. 2013;143(12):1943–1949. doi: 10.3945/jn.113.183004.

  68. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–694. doi: 10.1038/nm1577.

  69. Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F. NO and HNO donors, nitrones, and nitroxides: past, present, and future. Med Res Rev. 2018;38(4):1159–1187. doi: 10.1002/med.21461.

  70. Ono H, Nishijima Y, Ohta S, Sakamoto M, Kinone K, Horikosi T, Tamaki M, Takeshita H, Futatuki T, Ohishi W, Ishiguro T, Okamoto S, Ishii S, Takanami H. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection. J Stroke Cerebrovasc Dis. 2017;26(11):2587–2594. doi: 10.1016/j.jstrokecerebrovasdis.2017.06.012.

  71. Ostojic SM. Does drinking water rich in hydrogen gas revive brain hypometabolism in neurodegeneration by SCFAs upregulation? Eur J Clin Nutr. 2021;75(1):212–213. doi: 10.1038/s41430-020-0680-x.

  72. Perlamutrov YN, Olhovskaya KB, Zakirova SA. Double-blind controlled randomised study of lactulose and lignin hydrolysed combination in complex therapy of atopic dermatitis. Microb Ecol Health Dis. 2016;27:30418. doi: 10.3402/mehd.v27.30418.

  73. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MW. [FeFe- and [NiFe-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta. 2015;1853(6):1350–1369. doi: 10.1016/j.bbamcr.2014.11.021.

  74. Prieto I, Montemuino S, Luna J, de Torres MV, Amaya E. The role of immunonutritional support in cancer treatment: current evidence. Clin Nutr. 2017;36(6):1457–1464. doi: 10.1016/j.clnu.2016.11.015.

  75. Qiu X, Ye Q, Sun M, Wang L, Tan Y, Wu G. Saturated hydrogen improves lipid metabolism disorders and dysbacteriosis induced by a high-fat diet. Exp Biol Med (maywood) 2020;245(6):512–521. doi: 10.1177/1535370219898407.

  76. Rose P, Moore PK, Whiteman M, Kirk C, Zhu YZ. Diet and hydrogen sulfide production in mammals. Antioxid Redox Signal. 2021;34(17):1378–1393. doi: 10.1089/ars.2020.8217.

  77. Runtuwene J, Amitani H, Amitani M, Asakawa A, Cheng KC, Inui A. Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ. 2015;3:e859. doi: 10.7717/peerj.859.

  78. Sano M, Suzuki M, Homma K, Hayashida K, Tamura T, Matsuoka T, Katsumata Y, Onuki S, Sasaki J. Promising novel therapy with hydrogen gas for emergency and critical care medicine. Acute Med Surg. 2018;5(2):113–118. doi: 10.1002/ams2.320.

  79. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6(221):221ra15. doi: 10.1126/scitranslmed.3007653.

  80. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity. 2016;45(2):374–388. doi: 10.1016/j.immuni.2016.07.009.

  81. Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y, DePeaux K, Poholek AC, Delgoffe GM. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol. 2021;22(2):205–215. doi: 10.1038/s41590-020-00834-9.

  82. Seckler F, Doussot A, Colpart P, Turco C, Calame P, Aubin F, Algros MP, Borg C, Nardin C, Heyd B. Preoperative immunotherapy for resectable hepatocellular carcinoma: toward a paradigm shift? J Hepatol. 2020;73(6):1588–1590. doi: 10.1016/j.jhep.2020.05.048.

  83. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167. doi: 10.1016/j.molcel.2012.09.025.

  84. Shi Q, Chen C, Deng W-H, Wang P, Zuo T, Zhao L, Yu J, Zhao K-L, Mei F-C, Li C, Wang G-R, Wang W-X. Hydrogen-rich saline attenuates acute hepatic injury in acute necrotizing pancreatitis by inhibiting inflammation and apoptosis, involving JNK and p38 mitogen-activated protein kinase–dependent reactive oxygen species. Pancreas. 2016;45(10):1424–1431. doi: 10.1097/MPA.0000000000000678.

  85. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590.

  86. Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, Sendor AB, Chiang YJ, Corona AL, Gemta LF, Vincent BG, Wang RC, Kim B, Hong J, Chen CL, Bullock TN, Irish JM, Rathmell WK, Rathmell JC. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2017;2(12):e93411. doi: 10.1172/jci.insight.93411.

  87. Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr Pharm Des. 2021;27(5):610–625. doi: 10.2174/1381612826666200821114016.

  88. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–340. doi: 10.1053/j.gastro.2019.06.048.

  89. Sun R, Liu X, Li G, Wang H, Luo Y, Huang G, Wang X, Zeng G, Liu Z, Wu S. Photoactivated H2 nanogenerator for enhanced chemotherapy of bladder cancer. ACS Nano. 2020;14(7):8135–8148. doi: 10.1021/acsnano.0c01300.

  90. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.

  91. Suzuki A, Ito M, Hamaguchi T, Mori H, Takeda Y, Baba R, Watanabe T, Kurokawa K, Asakawa S, Hirayama M, Ohno K. Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson’s disease. PLoS ONE. 2018;13(12):e0208313. doi: 10.1371/journal.pone.0208313.

  92. Svetikiene M, Ringaitiene D, Vezeliene J, Isajevas V, Trybe D, Vicka V, Malickaite R, Jurgauskiene L, Norkuniene J, Serpytis M, Sipylaite J. The efficacy of early postoperative enteral immunonutrition on T-lymphocyte count: a randomised control study in low-risk cardiac surgery patients. Clin Nutr. 2021;40(2):372–379. doi: 10.1016/j.clnu.2020.05.009.

  93. Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (shanghai) 2019;51(12):1189–1197. doi: 10.1093/abbs/gmz121.

  94. Tien Vo TT, Vo QC, Tuan VP, Wee Y, Cheng H-C, Lee IT. The potentials of carbon monoxide-releasing molecules in cancer treatment: an outlook from ROS biology and medicine. Redox Biol. 2021;46:102124. doi: 10.1016/j.redox.2021.102124.

  95. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi: 10.1038/nm.3444.

  96. Van Acker HH, Ma S, Scolaro T, Kaech SM, Mazzone M. How metabolism bridles cytotoxic CD8(+) T cells through epigenetic modifications. Trends Immunol. 2021;42(5):401–417. doi: 10.1016/j.it.2021.03.006.

  97. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309. doi: 10.1038/s41586-019-1730-1.

  98. Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–S2180. doi: 10.21037/jtd.2019.10.40.

  99. Wang D, Wang L, Zhang Y, Zhao Y, Chen G. Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother. 2018;104:788–797. doi: 10.1016/j.biopha.2018.05.055.

  100. Wang Z, Wang G, Xie K. Prospects of molecular hydrogen in perioperative neuroprotection from basic research to clinical application. Curr Opin Anaesthesiol. 2020;33(5):655–660. doi: 10.1097/ACO.0000000000000915.

  101. Wen YF, Chen MX, Yin G, Lin R, Zhong YJ, Dong QQ, Wong HM. The global, regional, and national burden of cancer among adolescents and young adults in 204 countries and territories, 1990–2019: a population-based study. J Hematol Oncol. 2021;14(1):89. doi: 10.1186/s13045-021-01093-3.

  102. Wojtovich AP, Berry BJ, Galkin A. Redox signaling through compartmentalization of reactive oxygen species: implications for health and disease. Antioxid Redox Signal. 2019;31(9):591–593. doi: 10.1089/ars.2019.7804.

  103. Wu MJ, Chen M, Sang S, Hou LL, Tian ML, Li K, Lv FQ. Protective effects of hydrogen rich water on the intestinal ischemia/reperfusion injury due to intestinal intussusception in a rat model. Med Gas Res. 2017;7(2):101–106. doi: 10.4103/2045-9912.208515.

  104. Wu Y, Yuan M, Song J, Chen X, Yang H. Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano. 2019;13(8):8505–8511. doi: 10.1021/acsnano.9b05124.

  105. Wu Y, Su L, Yuan M, Chen T, Ye J, Jiang Y, Song J, Yang H. In vivo X-ray triggered catalysis of H2 generation for cancer synergistic gas radiotherapy. Angew Chem Int Ed Engl. 2021;60(23):12868–12875. doi: 10.1002/anie.202100002.

  106. Xiao HW, Li Y, Luo D, Dong JL, Zhou LX, Zhao SY, Zheng QS, Wang HC, Cui M, Fan SJ. Hydrogen-water ameliorates radiation-induced gastrointestinal toxicity via MyD88’s effects on the gut microbiota. Exp Mol Med. 2018;50(1):e433. doi: 10.1038/emm.2017.246.

  107. Xie K, Zhang Y, Wang Y, Meng X, Wang Y, Yu Y, Chen H. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm Res. 2020;69(7):697–710. doi: 10.1007/s00011-020-01347-9.

  108. Xu C, Chen YP, Du XJ, Liu JQ, Huang CL, Chen L, Zhou GQ, Li WF, Mao YP, Hsu C, Liu Q, Lin AH, Tang LL, Sun Y, Ma J. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. 2018;363:k4226. doi: 10.1136/bmj.k4226.

  109. Yang Y, Li B, Liu C, Chuai Y, Lei J, Gao F, Cui J, Sun D, Cheng Y, Zhou C, Cai J. Hydrogen-rich saline protects immunocytes from radiation-induced apoptosis. Med Sci Monit. 2012;18(4):BR144–BR148. doi: 10.12659/MSM.882616.

  110. Yip W, Hughes MR, Li Y, Cait A, Hirst M, Mohn WW, McNagny KM. Butyrate shapes immune cell fate and function in allergic asthma. Front Immunol. 2021;12:628453. doi: 10.3389/fimmu.2021.628453.

  111. Yu Y, Yang Y, Yang M, Wang C, Xie K, Yu Y. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway. Int Immunopharmacol. 2019;69:11–18. doi: 10.1016/j.intimp.2019.01.022.

  112. Zhai X, Chen X, Shi J, Shi D, Ye Z, Liu W, Li M, Wang Q, Kang Z, Bi H, Sun X. Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic Biol Med. 2013;65:731–741. doi: 10.1016/j.freeradbiomed.2013.08.004.

  113. Zhai S, Zhu L, Qin S, Li L. Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57BL/6J mice. Microbiologyopen. 2018;7(6):e00612. doi: 10.1002/mbo3.612.

  114. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965.

  115. Zhang B, Wang F, Zhou H, Gao D, Yuan Z, Wu C, Zhang X. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy. Angew Chem Int Ed Engl. 2019;58(9):2744–2748. doi: 10.1002/anie.201813066.

  116. Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen gas: a novel type of antioxidant in modulating sexual organs homeostasis. Oxid Med Cell Longev. 2021;2021:8844346. doi: 10.1155/2021/8844346.

  117. Zhao L, Zhou C, Zhang J, Gao F, Li B, Chuai Y, Liu C, Cai J. Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice. Int J Biol Sci. 2011;7(3):297–300. doi: 10.7150/ijbs.7.297.

  118. Zhou P, Lin B, Wang P, Pan T, Wang S, Chen W, Cheng S, Liu S. The healing effect of hydrogen-rich water on acute radiation-induced skin injury in rats. J Radiat Res. 2019;60(1):17–22. doi: 10.1093/jrr/rry074.

RSS

歡迎分享文章。如果您想複製或引用文章請附上出處網址連結

bottom of page